
Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 44

Volume 1, Number 1, November, 2014 (44-57)

Study of Security in Legendary Operating Systems

Surendranath Reddy Sreeyapureddy*
Department of Computer Science

Vikrama Simhapuri University

Abstract
As the computers advanced so much and it has more complexities, operating

system responsibilities has increased, and give challenge to the operating

system developers to build a secure operating system. Several operating systems

were out in the market in which most of them are vulnerable. As the computer

hardware is becoming more and more powerful, it is also vital to keep the

software updated in order to utilize the hardware of the system efficiently and

make it faster and smarter. The paper highlights some core issues that if dealt

with in the operating system level would make use of the full potential of the

computer hardware and provide an excellent user experience. Also in this paper

we will see operating system security issues that computer industry has faced in

desktop and mobile area and a brief idea is depicted to improve all operating

systems for security.

Keywords: Desktop Operating System, Mobile Operating System, Security,

Android, Mac.

 *Author for correspondence sr1surendranathreddy@gmail.com

1. Introduction

Computer has improved marvelously in recent years; it has become necessity of everyone from

just a scientific tool so that improving security is an issue to the users. For this purpose operating

system plays a vital role in security of a system. Today we don’t call a system by its

manufacturer name but we call it by its

operating system as MAC PC or Windows

PC. Building a secure operating system has

been and still is a major issue. Operating

systems are becoming more dynamic day by

day to utilize the full capacity of hardware’s,

as operating system is becoming more

dynamic operating system faces some

challenges which are still to be conquered.

One of the major challenges is security of

operating system. Informally, security is,

keeping unauthorized entities from doing

things you don’t want them. This will help

readers to have an overview of previous work

ABHIYANTRIKI
An International Journal of Engineering & Technology

(AIJET)

Vol. 1, No. 1 (November, 2014) http://www.aijet.in/ eISSN: 2394-627X

Figure 1

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 45

Volume 1, Number 1, November, 2014 (44-57)

has been done for operating system security and give a direction to start their own study and will

provide help for developers to keep these security issues in mind in development of operating

system. We have a lot of different kinds of operating systems in the market but we will analyze

most famous operating systems because these are used in large number publicly. Figure 1 and

figure 2 are showing popularity chart which distinguish operating systems and show us the

market share of operating systems in their respective area like desktop operating system and

mobile operating system.

Security

Security has been and still remains a major concern for operating system developers and users

alike. Informally security is keeping unauthorized entities from doing things you don’t want

them to do. It is operating system job to provide security against unauthorized users. Computer

security is defined by three attributes, Confidentially, Integrity, Availability. Confidentially is

prevention of unauthorized disclosure of

information. Integrity is prevention of

unauthorized modification of information, and

Availability is the prevention of unauthorized

withholding of information or resources.

Operating system can provide sandbox,

hashing password to protect against threats. In

this paper some former researches techniques

are used and we are going to explore more

techniques and suggest the ideas for making a

better security for operating system.

2. Review of Literature

Security has been improved recently but still there are flaws. Reasons are: a) most attacks are

nowadays publicly announced and describes in detail on internet, b) vendor’s attempt to offer

backward compatibility which leaves open old weaknesses in the system.

Mobile Operating Systems

Mobile operating systems combination of personal computer and managing all hardware and

optimizes. Many mobile operating systems can be seen in the market but two famous mobile

systems now days are iPhone operating system (iOS) and Android.

a. iOS

iOS derived from OS X that share by darwing foundation [1]. iOS mainly used for the iPhone

and iPad manufactured by Apple. There are 4 abstraction layers in iOS which are Core

Services Layer, Media Layer, Core OS Layer and Cocoa Touch Layer. Core OS layer lies on

the hardware and is the bottom layer. This layer function is to provide services including low

level network access to external accessories and common operating system such as handling

file system and memory management policy. Media layers contain audio, video and graphics

geared towards creating the best multimedia experience on mobile device. Technology layer

is for the ease of application builders that would look great. Cocoa Touch layer define the

basic infrastructure and to support multitasking, touch based input, push notification and

many high level notifications. This is the key framework for building iOS application.

Figure 2

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 46

Volume 1, Number 1, November, 2014 (44-57)

b. Android

Android operating system is an open source and source code release under Apache license by

Google. The OS is a linux based and the application software running on an application

framework which includes Java compatible [2] libraries based on Apache Harmony.

Mobile Security Requirements

Here we are discussing 5 security requirements of mobile operating system which are:

a. Application Sandboxing

Sandboxing is mechanism for program to run separately, it is uses to limit the app

boundary. When an app is build the permissions are assigned which cannot be changed

dynamically on run time by an application or operating system kernel. Resources can be

shared but these apps will never go beyond their defined limits which are declared at

startup. In iOS all application shares same sandbox but in Android every application has

its own sandbox.

b. Encryption

Encryption is the most effective method to secure data. Encryption is a technique to

convert data into a secret code so data can be secure. For this purpose encryption

algorithm is made and applied to data. You must have a secret key or password to decrypt

data which is an encrypted file. When encryption is not applied to text it is simple plain

text and when encryption is applied to data is called as cipher text. Encryption introduced

to android in Android 3.0 Honeycomb version, first encryption method for Android is

device encryption API which was released in Ice Cream Sandwich 4.0. Android applies

encryption on disk level. Encryption is also applied to iOS which was introduced in

iPhone 3GS version.

c. Memory Randomization

Memory randomization is a process where the memory application shared library and

other in a device is located randomly. This technique is important to avoid attack on the

memory of running application from any malicious code or virus. This technique is

applied in iOS 4.3 version and later while in Android it is applied in Jelly Bean 4.1.1 and

later versions.

d. Built-in Antivirus

In general, there are 3 types of popular malware that affects mobile such as Virus,

Spyware and Trojan [3]. A virus is a malicious code which usually transmitted through

email. Spyware is a program which collects the information about users without letting

them know about it. Trojan is a desirable function but actually the purpose of the trojan is

malicious. Android and iOS both were introduced with built-in antivirus features to avoid

viruses, spyware, and trojans. Thousands of application can be downloaded from Google

play safely because antivirus feature is not on android device but on Google Play [5]. It

means any app downloaded except from Google Play can be very risky. We can

download antivirus’s applications from Google Play to avoid popular malware that

affects our operating system. In iOS there is no need of antivirus because there is no

room for virus to get into the system. In iOS there is only one place to download

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 47

Volume 1, Number 1, November, 2014 (44-57)

application into the system that is App store, where every application is checked

rigorously to make sure that it does not contain any kind of malicious code.

e. Data Storage Format

Disk Storage is a place where all the data is stored in build in storage or external storage.

It is important to secure the storage to make sure your data is secured from any unwanted

code. Commonly device has both internal and external storage. In Android, the data can

be stored in both storages which in internal and external. Android implements standard

crypto libraries to secure storage but it is as efficient as a password is applied. With the

root access any unwanted code can access the files without any restriction and can spread

malwares. While in iOS devices does not have external storage or memory but built-in

storage. This requires permission to access the data. Data protection APIs in iOS are

combined with passphrase which provide an additional layer of data protection. So iOS

storage will be more secure than Android and make the application difficult to access the

data from internal storage.

Table 1: A Quick Comparison of Android and iOS

Feature Android iOS

Sandbox

Every Application has its

own Sandbox

All application

shared same

sandbox

Encryption

Encryption is on Disk Level Encryption is on

hardware level

Memory

Randomization

Applied in 4.1.1 versions

and later versions

Applied on 4.3

and later versions

Buit-in

Antivirus

Antivirus can be

downloaded from Google

Play, virus checking is done

on Google Play only, can be

easily attacked because no

built-in antivirus, any

application outside from

Google Play is risky.

No antivirus

needed because

application can be

downloaded only

from Apps store

and checking been

done in Apps

store.

Data Storage

Have an external storage and

it can be access by unwanted

code.

No external

storage which

makes difficult for

the unwanted code

to access built-in

storage.

By this comparison we conclude that iOS security is better than Android system.

Desktop Operating System

Many desktop operating system can be seen in market but here we are going to discuss three

most famous and in most use desktop operating system which are Windows, Mac, and Linux.

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 48

Volume 1, Number 1, November, 2014 (44-57)

[1] Windows

Microsoft windows are the most popular and most used operating system in the world.

It’s a graphical series of operating system of Microsoft. As figure 2 shown above MS

Windows dominate 90% of desktop operating system shares. Microsoft Windows is a

closed source operating system.

Windows Security

As the Microsoft windows is the most used operating system, it has more threats than

other operating system as well. In 2005, over 1000 new viruses and worms were seen in

six months duration, and 11000 malicious programs, viruses, trojans, back-doors and

exploits were written for windows. Microsoft windows have released a lot versions and

every operating system has some security issues.

User Space and Kernel Space

The Windows operating system is designed to support applications by moving more

functionality into the operating system, and by more deeply integrating applications into

the Windows kernel. Which doesn’t have separation between user space and kernel

space? Which may cause the critical damage to Kernel?

Update

Microsoft doesn’t want to spend money on previous versions of windows, they don’t

provide windows update instead they are improving their flaws in upcoming versions.

Firewall

It only restricted inbound traffic and did not provide any mechanism for blocking or

filtering traffic outbound from the Windows PC.

Hidden File Extensions

Windows continues to hide known file extensions by default. In other words, rather than

displaying a full file name like “pcworld.docx”, Windows will only display “pcworld”.

The idea is to make things more simple or user-friendly. We don’t want to confuse the

end-user with frivolous details like “docx”, or “xls”, or “mp3”.

Internet Explorer

The security flaw allows attackers to slip malicious code into a website, using a

compromised file. When a victim visits the tainted website using any of the Internet

Explorer web browsers versions 6 through 11, attackers could gain full user rights over

the victim’s computer and potentially all information on it.

Adobe Flash Player

Gain access to a system and execute arbitrary code user privileges.

Memory

This problem was very common in Windows 9x family and Windows XP, although

Windows XP has made a lot improvements over Windows 9x, but they both share this

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 49

Volume 1, Number 1, November, 2014 (44-57)

memory problem, when any user program try to access the operating system memory or

other user program it result come in memory dump and gets crashed.

[2] MAC OS

MAC OS is second most popular and widely used operating system which shares 6% of

desktop operating system market share as shown in the figure 2. It is UNIX based

graphical user interface operating system made only for MAC computers by Apple Inc.

MAC Security

MAC is second most popular operating system, so there are not too many viruses for

MAC. But it doesn’t mean MAC doesn’t need security. Recently a trojan name variously

Mac Protector, Mac Defender and Mac Guard showed on Apple machines, a window

claiming to be the Apple Security Center pops up and indicate that virus has been found

on this computer, and then it prompts to user to download Mac Protector and this

software intended to steal credit card information [6].

When installing Mac OS X 10.5 Leopard, destination volumes may not appear in the

installation window for a while, even though the volumes are visible while started from

Mac OS X 10.4 or in Disk Utility. After performing an upgrade installation the default

type of Mac OS X 10.5 Leopard, an administrator account may change to a standard one.

After installing Mac OS X 10.5 Leopard on a 20-inch or 24-inch iMac (mid2007)

computer (ones that have an aluminum frame), user may not be able to log in at login

windows, login name and password are apparently accept but after a blue screen appears

for a few seconds, the login windows reappears instead of your desktop. After installing

Mac OS X 10.5 Leopard user may not be able to log in to account that has no password

which was used in Mac 10.2.x and migrated to Leopard.

[3] Linux

In Linux, security system has two parts: first is authentication and second is access

control. Some security issues regarding Linux operating system are as follows:

Local Security

Local users create a lot of problems for system. It is bad policy to provide accounts to

people you don’t know or for whom you have no contact information. It is better to

follow some rules of thumb when offering access to your Linux machine: give users

minimum privilege, monitor when and where they log in, remove inactive accounts and

prohibit the creation of group user IDs.

Root Security

The root account has authority over the entire machine; you should use it only for

specific tasks. Even a small mistake made while logging in as a root user can lead to

significant problems. Follow the simple rules below and they will help you.

• When running complex commands, first run them in a non-destructive manner. A

simple example is to do an “ls” before doing an “rm” so that you are sure about

the files you are going to delete.

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 50

Volume 1, Number 1, November, 2014 (44-57)

• Give users an interactive “rm” for deleting the files.

• Become “root only” to do specific tasks. If you want to experiment with

something, go back to a normal user shell.

• The command path, which specifies the directories in which the shell searches for

the programs, is very important. Limit the command path and never include “.”

(Signifying the current directory) in your command path.

• The /etc/security file contains a list of terminals that root can log in from. Be

careful while adding an entry to this file.

File Security (Virtual File System)

Keep in mind the following points to help protect your systems and data stored on them.

If you are exporting file systems using NFS, configure /etc/exports with the most

restrictive access possible. Do not use any wild cards. Their integrity needs to be

maintained, as they help in determining when and from where a user has entered your

system. World-writable files can serve as a security hole. Also, world-writable directories

are dangerous as they allow an intruder to add/delete files. You must locate the world-

writable files on your system and make sure that you know why they are writable. It is

also important to locate the un-owned files. The presence of un-owned files might also be

an indication that an intruder has accessed your system. Before you change the

permission on any system files, make sure you know what you are doing. Never make

changes to the permission on a file just because it is the easy way to get things working.

File Permissions

Make sure that your system files are not open for casual editing by users and groups who

do not have the appropriate permissions. The Linux operating system distinguishes the

access control based on three characteristics: owner, group and other. Access to a file will

be determined by permission bits and these bits are ‘rwx’ – where ‘r’ identifies ‘read’,

‘w’ identifies ‘write’ and ‘x’ identifies ‘execute’. We can set or reset these three

permission bits based on the kind of access that we are interested in giving to a user. This

is considered as a basic level of preventing access to a file from unauthorized sources.

Integrity Checking

There is a very good mechanism to detect local attacks on your system. This is referred to

as ‘integrity checking’. Tripwire, Aide and Osiris are some of the popular integrity

checkers. These integrity checkers will run a number of checksums on all important

binaries and configuration files and compare them against a database of former, known

values as a reference. Thus any changes in files can be easily flagged. Based on these

signals, a system administrator can make appropriate changes so that integrity of

important files is maintained.

Password Security

Most Linux distributions come with “passwd” programs that do not allow you to set a

password that can be easily guessed. Thus, it is necessary to make sure that your

“passwd” program is up to date. Linux uses a one-way encryption algorithm known as

Data Encryption Standard (DES), which is used to encrypt your passwords. The

encrypted password is stored in /etc/passwd. When you try to log in, the password you

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 51

Volume 1, Number 1, November, 2014 (44-57)

type again gets encrypted and is compared with the entry in the file that stores your

password. A match means you have entered the same password and you are given access

to the system. Shadow passwords are a means of keeping your encrypted password

information secret from the normal users. Recent versions of both Red Hat and Debian

Linux use shadow passwords by default. Shadow passwords are saved in /etc/shadow and

they can be read only by privileged users.

Kernel Security

As the kernel controls your machine’s networking, it is essential to keep it secure. Let’s

look at some popular kernel configuration options that relate to security. IP forwarding: If

you enable IP forwarding, your Linux box becomes a router. You can enable or disable

IP forwarding by using these commands:

root# echo 1 > /proc/sys/net/ipv4/ip_forward /* for enabling */

root# echo 0 > /proc/sys/net/ipv4/ip_forward /* for disabling */

IP Firewalling

This option is very useful if you want to protect your dial-up workstation from someone

entering via your PPP dial-up interface.

IP Firewall Packet Logging

This option displays the information about the packets your firewall receives.

Other Security Implementations

The one to consider here is the implementation of IPSEC for Linux. IPSEC is a

mechanism to create cryptographically secure communications at the IP network level.

The main idea here is to provide authentication, integrity, access control and

confidentiality for your information.

Security Guidelines

Among all the concerns surrounding the writing of good code, security necessarily comes

at the top. Security problems can come from people actively trying to penetrate your

security or from simple issues such as someone providing unexpected inputs to a program

or running some wrong commands. Too much access to systems can mean that users –

even with legitimate access – can cause trouble, either accidentally or on purpose.

3. Objectives & Methodology

Security has been and still remains a major concern for operating system developers and users

alike. Informally speaking, security is, keeping unauthorized entities from doing things you don’t

want them to do. Operating system protection involves protection against unauthorized users as

well as protection of file systems. File permissions are based on user identity, which in turn are

based on user identity, which in turn are based on authentication. Hence authentication of users

has to be highly secure such that any unauthorized user doesn’t hack in along with proper

mechanism to let in genuine users. Various authentication mechanisms have been and are being

used in operating systems, like the old-fashioned password authentication, where a plaintext

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 52

Volume 1, Number 1, November, 2014 (44-57)

password is stored. This mechanism has been proven to be easily hackable, so another technique

that provides an alternative is Hashed Passwords.

General Algorithm

Store f(Pw), where f is not invertible

When user enters Pw, calculate f(Pw) and compare.

Attackers can still use password-guessing algorithms; therefore most operating systems use

access control mechanisms to protect the hashed passwords. Another authentication mechanism

used is the Challenge/Response Authentication. Here what happens is the server knows Pw and

sends a random number N, both sides then calculate f(Pw,N) where f is some encryption

algorithm, although it must be noted that this mechanism is not very famous with operating

systems. The reason being that, even in this case a person who guesses N or finds it out and

comes to know f(Pw,N) can run password-guessing algorithms, so it is not that very different

from the hashed-password authentication in terms of security. These days use of biometrics has

become a major user authentication mechanism. Such techniques include fingerprint readers, iris

scanner, etc. Although biometrics works fine if used locally, yet even these methods are

susceptible to spoofing attacks. Hence we can infer that even the best and the most hi-tech

authentication has its limitations.

When talking about operating system security, authentication attacks will make the bottom of

priority list. The major problems are attacks like, Trojan Horses, Login spoofing and Buggy

Software. Trojan Horses are basically programs that are disguised programs, meant to harm the

system and its resources. Someone may be tricked into running a program that may adversely

affect that user; his system or data. Although Linux, UNIX and other Unix-like operating

systems are generally regarded as very protected, yet they are not immune to computer viruses.

For example, consider a virus program written in C, which goes on creating new files and

allocating space in an infinite loop! Will Linux be safe in that case? Hence viruses are a threat to

all operating systems. Although it must be noted that there has not yet been a widespread Linux

malware (malware as in any malicious software) threat of the type that Microsoft Windows

software face; this is mostly because of the following reasons: the user base of the Linux

operating system is smaller compared to Windows; malwares’ lack root access; and fast updates

for most Linux vulnerabilities.

Operating systems may use the following mechanisms to avoid attacks of this type:

• Operating systems can provide sandboxes: Sandboxes are environments where a program

can execute but should not affect the rest of the machine.

• The trick here is, permitting limited interaction with outside while still providing the full

functionality of the operating system. Or in other words, the file system can be kept out

of unauthorized access and 3
rd

 party softwares may be allowed minimum access to file-

systems.

Race conditions can also be a critical security issue. To illustrate such a situation, consider a

privileged program that checks if a file is readable and then tries to open it as root. The attacker

passes it a symbolic link, in the interval between the two operations; the attacker removes the

link and replaces it with a link to a protected file. This would give him direct access to the

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 53

Volume 1, Number 1, November, 2014 (44-57)

protected file area and into the system. So here, an attacker takes advantage of the race condition

between two operations to get access into the protected area of the operating system. The only

way to overcome such attacks is to provide only atomic operations to access files and strict

restrictions on their access by other users other than root.

Security is not only an issue with the operating systems in desktops and laptops; the operating

systems of tablets and cell-phones also have the same security issues but these issues in phones

are the most critical because if an attacker gets into the operating system of a phone, the attacker

may get access to the personal data (viz. contacts, messages, etc) of the victim; and moreover the

user base of these smaller devices like smart-phones and tablets in increasing at an alarming rate

and the amount of data sharing between these devices is far more than that between computers.

Management

Managing the system memory is a very important function of an operating system. Hence the

success of any operating system also depends to some extent on how well the operating system

manages the system memory. There have been numerous mechanisms that have been researched

upon and implemented in this area of operating system development. Today, an operating system

has to execute tasks on a huge amount of data but in the early days the catch was that to operate

on data, it had to be present in the primary memory and primary memory cannot be as much as

the secondary memory. So the researchers and developers started finding alternate ways of

storage and execution of data. During this time came a concept called paging. In operating

systems, paging is one of the memory management schemes by which the system can store and

retrieve data from the secondary storage for use in the main memory. In this scheme, the

operating system retrieves data from secondary storage in same size blocks called pages. The

main function of paging is performed when a program tries to access pages that are not currently

mapped to the RAM. This situation is known as a page fault.

Objectives

• Determine the location of data in auxiliary storage.

• Obtain an empty page frame in RAM to use as a container for data.

• Load the requested data into the available page frame.

• Update the page table to show the new data.

• Return control to the program, transparently retrying the instruction that caused the page

fault.

Until there is not enough RAM to store all the data needed, the process of obtaining an empty

page frame does not involve removing another page from RAM. If all page frames are non-

empty, obtaining an empty page frame requires choosing a page frame containing data to empty.

If the data in that page frame has been modified since it was read into RAM, it must be written

back to its location in secondary storage before being freed; otherwise, the contents of the page's

page frame in RAM are the same as the contents of the page in secondary storage, so it does not

need to be written back to secondary storage. If a reference is then made to that page, a page

fault will occur, and an empty page frame must be obtained and the contents of the page in

secondary storage again read into that page frame. Efficient paging systems must determine the

page frame to empty by choosing one that is least likely to be needed within a short time. There

are various page replacement algorithms that try to do this. Most operating systems use some

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 54

Volume 1, Number 1, November, 2014 (44-57)

approximation of the least recently used (LRU) page replacement algorithm (the LRU itself

cannot be implemented on the current hardware) or a working set-based algorithm.

Paging is a very important feature for memory management and is made use of by most of the

commercially available operating systems. For example, consider paging in Windows. Almost all

memories in windows can be paged out to disks. This is where page file comes into play; it’s

where most pages are placed when they are not resident in the physical memory. However, not

everything gets written into page files, they get written to specific mapped files. Better than that,

the pages only get written if they have been modified. If they have not been altered since they

were read from the file, windows doesn’t have to write the pages back out; it can just discard

them. If it ever needs the pages again, they can be safely re-read from the files. Although paging

is a very efficient mechanism yet challenges still exist in this area, that need to be overcome if

the performance of the system has to be increased. Operating systems today have taken paging to

the next level, by allowing sharing of pages between different processes. This technique has an

important advantage, that is, it avoids duplication of pages for multiple processes. Or in other

words, if pages were not shared between processes, then each process would have had to acquire

its own copy of a page that is being used by another process. Hence by allowing sharing of

pages, the execution time of instructions goes down, in turn making the operating system run

faster. This memory sharing is useful, especially in low-memory systems, but the current

technique present for sharing of pages has its limitations; major one being that the operating

system only shares memory that corresponds to memory mapped files. That is because this is the

only time that the operating system knows that pages are identical. For regular data there is no

page sharing.

A new scheme for page sharing is going to be implemented by vendors. Here, the system will

periodically scan memory, and when it finds two pages that are identical, it will share them,

reducing the memory usage. If a process then tries to modify the shared page, it will be given its

own private copy, ending the sharing. This mechanism will have a huge effect on virtualization.

When virtualizing, the same operating system may be running multiple times, meaning that the

same executable files are loaded several times over. So the traditional memory-mapped file

approach to memory sharing cannot kick in here. Each virtual operating system is loading its

own files from its own disk image. This is where memory de duplication is useful; it can see that

the pages are all identical, and hence it can allow sharing even between virtual machines. This is

another technique that is used by some operating systems (Mac OS X) for memory management.

As per this method, when the operating system needs memory it will push something that isn’t

currently being used into a swap file for temporary storage. When it needs access to that data

again, it will read the data from the swap file and back into memory. In a sense, this can create

unlimited memory, but it is significantly slower since it is limited by the speed of the hard disk,

versus the near immediacy of reading data from RAM. Even this mechanism has a flaw. For

example, consider that processes A, B, C are to be executed one after the other wherein A and C

need same resources but B needs totally different resources. Another assumption here is that

there is no memory left in the RAM. So here once process A is finished, process B will have to

run, but since B needs different resources and resources of A are not required anymore for now,

they are shifted into swap file and resources for B are loaded in place of that. Now when C is to

be executed, again the resources that had been shifted to swap file has to be shifted back to the

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 55

Volume 1, Number 1, November, 2014 (44-57)

RAM. So here we see how redundant swapping of data takes place and these results in slow

processing speed.

Methodology

The operating systems today use some approximation of the LRU (least recently used) algorithm

as the LRU itself has not been completely implemented on any present machine. To increase

responsiveness, paging systems must employ better strategies to predict which page will be

needed soon. Such systems will attempt to load pages into main memory preemptively, before a

program references them. Operating systems will need better methods of page sharing, such that

page sharing for regular data and not only for memory-mapped data can be achieved. If

swapping mechanism is to be used for memory management, then proper measures need to be

taken to avoid redundant sharing of data as much as possible.

4. Theoretical Perspective

Nowadays usage of more than one processor in a computing system has become a common

occurrence. Operating systems should have efficient mechanism to support more than one

processors and the ability to schedule tasks between them. There are many variants of this basic

theme and the definition of multiprocessing may vary with context.

In a multiprocessing system, all CPUs may be equal, or some may be reserved for special

purposes. A combination of hardware and OS software design considerations determine the

symmetry or lack of it in a given system. For example, hardware or software considerations may

require that only one CPU respond to all hardware interrupts, whereas all other work in the

system may be distributed equally among CPUs; or execution of kernel-mode code may be

restricted to only one processor at a time whereas user-mode code may be executed in any

combination of processors. Multiprocessing systems are often easier to design if such restrictions

are imposed, but they tend to be less efficient than systems in which all CPUs are utilized.

Systems that treat all CPUs equally are called Symmetric Multiprocessing Systems (SMP). In

systems where CPUs are not equal, system resources may be divided in a number of ways

including Asymmetric Multiprocessing Systems (ASMP), Non-Uniform Memory Access

(NUMA) multiprocessing systems and Clustered Multiprocessing Systems. In computing, SMP

involves a multiprocessor computer architecture where two or more identical processors can

connect to a single shared main memory. Most common multiprocessor systems today use SMP

architecture. In case of multi-core processors, the SMP architecture applies to the cores, treating

them as separate processors. SMP systems allow any processor to work on any task no matter

where the data for that task is located in the memory. With proper OS support SMP systems can

easily move tasks between processes to balance the workload efficiently.

Asymmetric multiprocessing varies greatly from the standard processing model that we see in

the personal computers today. Due to the complexity and unique nature of this architecture it was

not adopted by many vendors during a brief stint. While SMP treats all of the processing

elements in the system identically, an ASMP system assigns certain tasks only to certain

processors. Although hardware level ASMP may not be in use, the idea and logical process is

still commonly used in applications that are multiprocessor intensive. Unlike SMP applications

which run there threads on multiple processors, ASMP application will run on one processor but

outsource smaller tasks to other processors. The operating systems may also make use of ASMP

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 56

Volume 1, Number 1, November, 2014 (44-57)

architecture for critical tasks like the tasks that may make use of system files. Operating systems

can dedicate one processor called the Master processor to implementation of tasks required on

the system files while smaller related tasks may be delegated to other processors called the Slave

Processors. Although the basic architecture will still be SMP yet for critical tasks the ASMP

architecture may be used. Modern CPUs operate considerably faster than the main memory they

use. In the early days of computing and data processing the CPU generally ran slower than its

memory. The performance lines crossed in the 1960s with the advent of high speed computing.

Since then, CPUs increasingly “starved for data” have had to stall while they wait for memory

accesses to complete. Limiting the amount of memory access provides the key to extracting high

performance from a modern day computer. For commodity processors this means installing an

ever increasing amount of high speed cache memory and very sophisticated algorithm to avoid

cache misses. But dramatic increases in size of the operating systems make the problem

considerably worse. Now a system can starve several processors at the same time, notably

because only one processor can access memory at a time. NUMA attempts to address this

problem by providing separate memory for each processor, avoiding performance hit when

several processors attempt to address the same memory. Of course, not all data ends up confined

to a single task, which means that more than one processor may require the same data. To handle

these cases, NUMA systems include additional hardware or software to move data between

banks. This operation slows the processors attached to those banks, so the overall speed increase

due to NUMA depends heavily on the exact nature of tasks that are running. This architecture

can substantially increase the performance but for that there has to be proper hardware and the

operating system must provide some mechanism to efficiently schedule the access to multiple

processor memory. If NUMA architecture is implemented successfully both in the hardware and

in the OS level then it could go a long way in speeding up processing with multiple processors.

5. Result & Discussion

Following are result of the work discussed above:

• Secure operating systems make it easier to write secure applications.

• There is a need for more flexible permission model. The models present today are either

too simple or too restrictive.

• No commercial operating system is secure enough.

• There will always be buggy code, but the trick is to build an application and an operating

system that will mostly restrict attacks and will protect the important assets of the system.

• Although most of the operating systems today use SMP architecture yet with proper

operating system support SMP systems can move tasks between processors more freely

and thus balance the workload effectively.

• Operating Systems can implement a hybrid of SMP and ASMP architectures wherein,

while all the tasks can be delegated using SMP architecture, the tasks that make use of

system files can make use of ASMP architecture to implement that part.

• NUMA architecture can be seriously looked upon during future operating system design

such that a way to integrate this architecture into the system is reached. If this happens, it

could go a long way in speeding up the processing with multiple processors.

6. Conclusion

As the user awareness of technology is increasing, so, there is expectation. Hence although

operating systems have progressed a lot, yet still there is a lot of ground to cover in this field.

Study of Security in Legendary Sreeyapureddy

ABHIYANTRIKI: An International Journal of Engineering & Technology 57

Volume 1, Number 1, November, 2014 (44-57)

Operating systems research is a very vast field and the reason for this is mostly because the

hardware is becoming stronger and faster by the day and hence there is a race for the operating

systems to keep up. The key issues pointed out in this paper if addressed, will make our

computation even more wonderful than the present.

References
[1] Ahmad, M. S., Musa, N. E., Nadarajah, R., Hassan, R., & Othman, N. E. (2013). Comparison

between Android and iOS operating system in terms of security. In: Proceedings of Information

Technology in Asia (CITA), 2013 (1-4).

[2] Khadijah, Wan Mohd., Ghazali, R. H., & Zulkarnain, M. A. (2013). A network device simulator.

In: Proceedings of IEEE ICACT 2013, Pyong Chang, Korea (pp.378-381).

[3] Qing, L., & Clark, G. (2013). Mobile security: a look ahead. IEEE Transactions on Security &

Privacy. 11(1), 78-81. doi: 10.1109/MSP.2013.15

[4] http://i0.wp.com/blog.goyello.com/wp-content/uploads/2014/01/2014-01-23-13_15_18.png

[5] http://www.laridian.com/images/2013-04%20Desktop%20OS%20Market%20Share.png

[6] http://computer.howstuffworks.com/macs/10-differences-between-macs-and-pcs.htm#page=9

[7] Oldberg, R. P. G. (June, 1974). Survey of virtual machine research. IEEE Computer Magazine.

pp. 34–45.

[8] Bhargava, R. S., Erebrin, B. S., Padini, F., & Manne, S. (2008). Accelerating two-dimensional

page walks for virtualized systems. In: Proceedings of 13
th
 International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS).

[9] Ben-Yehuda, M., Mason, J., Xenidis, J., Krieger, O., Van Doorn, L., Nakajima, J., Mallick, A., &

Wahlig, E. (2006). Utilizing IOMMUs for virtualization in Linux and Xen. In: Proceedings of

Ottawa Linux Symposium (pp. 71–86).

[10] Levasseur, J., Uhlig, V., Stoess, J., & Gotz, S. (2004). Unmodified device driver reuse and

improved system dependability via virtual machines. In: Proceedings of 6
th
 Symposium on

Operating Systems Design & Implementation (p. 2).

